3.200 \(\int \frac{(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{11/2}} \, dx\)

Optimal. Leaf size=147 \[ \frac{10 a^2 \sin (c+d x)}{33 d e^5 \sqrt{e \sec (c+d x)}}+\frac{2 a^2 \sin (c+d x)}{11 d e^3 (e \sec (c+d x))^{5/2}}+\frac{10 a^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \sec (c+d x)}}{33 d e^6}-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{11 d (e \sec (c+d x))^{11/2}} \]

[Out]

(10*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[e*Sec[c + d*x]])/(33*d*e^6) + (2*a^2*Sin[c + d*x])/(
11*d*e^3*(e*Sec[c + d*x])^(5/2)) + (10*a^2*Sin[c + d*x])/(33*d*e^5*Sqrt[e*Sec[c + d*x]]) - (((4*I)/11)*(a^2 +
I*a^2*Tan[c + d*x]))/(d*(e*Sec[c + d*x])^(11/2))

________________________________________________________________________________________

Rubi [A]  time = 0.105537, antiderivative size = 147, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3496, 3769, 3771, 2641} \[ \frac{10 a^2 \sin (c+d x)}{33 d e^5 \sqrt{e \sec (c+d x)}}+\frac{2 a^2 \sin (c+d x)}{11 d e^3 (e \sec (c+d x))^{5/2}}+\frac{10 a^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \sec (c+d x)}}{33 d e^6}-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{11 d (e \sec (c+d x))^{11/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^2/(e*Sec[c + d*x])^(11/2),x]

[Out]

(10*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[e*Sec[c + d*x]])/(33*d*e^6) + (2*a^2*Sin[c + d*x])/(
11*d*e^3*(e*Sec[c + d*x])^(5/2)) + (10*a^2*Sin[c + d*x])/(33*d*e^5*Sqrt[e*Sec[c + d*x]]) - (((4*I)/11)*(a^2 +
I*a^2*Tan[c + d*x]))/(d*(e*Sec[c + d*x])^(11/2))

Rule 3496

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*b*(
d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1))/(f*m), x] - Dist[(b^2*(m + 2*n - 2))/(d^2*m), Int[(d*Sec[e + f
*x])^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n,
1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (ILt
Q[m, 0] && LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) && IntegerQ[2*m]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{11/2}} \, dx &=-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{11 d (e \sec (c+d x))^{11/2}}+\frac{\left (7 a^2\right ) \int \frac{1}{(e \sec (c+d x))^{7/2}} \, dx}{11 e^2}\\ &=\frac{2 a^2 \sin (c+d x)}{11 d e^3 (e \sec (c+d x))^{5/2}}-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{11 d (e \sec (c+d x))^{11/2}}+\frac{\left (5 a^2\right ) \int \frac{1}{(e \sec (c+d x))^{3/2}} \, dx}{11 e^4}\\ &=\frac{2 a^2 \sin (c+d x)}{11 d e^3 (e \sec (c+d x))^{5/2}}+\frac{10 a^2 \sin (c+d x)}{33 d e^5 \sqrt{e \sec (c+d x)}}-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{11 d (e \sec (c+d x))^{11/2}}+\frac{\left (5 a^2\right ) \int \sqrt{e \sec (c+d x)} \, dx}{33 e^6}\\ &=\frac{2 a^2 \sin (c+d x)}{11 d e^3 (e \sec (c+d x))^{5/2}}+\frac{10 a^2 \sin (c+d x)}{33 d e^5 \sqrt{e \sec (c+d x)}}-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{11 d (e \sec (c+d x))^{11/2}}+\frac{\left (5 a^2 \sqrt{\cos (c+d x)} \sqrt{e \sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{33 e^6}\\ &=\frac{10 a^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \sec (c+d x)}}{33 d e^6}+\frac{2 a^2 \sin (c+d x)}{11 d e^3 (e \sec (c+d x))^{5/2}}+\frac{10 a^2 \sin (c+d x)}{33 d e^5 \sqrt{e \sec (c+d x)}}-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{11 d (e \sec (c+d x))^{11/2}}\\ \end{align*}

Mathematica [A]  time = 1.24247, size = 155, normalized size = 1.05 \[ \frac{a^2 \sqrt{e \sec (c+d x)} (\cos (2 (c+2 d x))+i \sin (2 (c+2 d x))) \left (-6 \sin (2 (c+d x))+7 \sin (4 (c+d x))-24 i \cos (2 (c+d x))+4 i \cos (4 (c+d x))+40 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) (\cos (2 (c+d x))-i \sin (2 (c+d x)))-28 i\right )}{132 d e^6 (\cos (d x)+i \sin (d x))^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[c + d*x])^2/(e*Sec[c + d*x])^(11/2),x]

[Out]

(a^2*Sqrt[e*Sec[c + d*x]]*(-28*I - (24*I)*Cos[2*(c + d*x)] + (4*I)*Cos[4*(c + d*x)] + 40*Sqrt[Cos[c + d*x]]*El
lipticF[(c + d*x)/2, 2]*(Cos[2*(c + d*x)] - I*Sin[2*(c + d*x)]) - 6*Sin[2*(c + d*x)] + 7*Sin[4*(c + d*x)])*(Co
s[2*(c + 2*d*x)] + I*Sin[2*(c + 2*d*x)]))/(132*d*e^6*(Cos[d*x] + I*Sin[d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.283, size = 205, normalized size = 1.4 \begin{align*} -{\frac{2\,{a}^{2}}{33\,d \left ( \cos \left ( dx+c \right ) \right ) ^{6}} \left ( 6\,i \left ( \cos \left ( dx+c \right ) \right ) ^{6}-6\, \left ( \cos \left ( dx+c \right ) \right ) ^{5}\sin \left ( dx+c \right ) -5\,i\cos \left ( dx+c \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( dx+c \right ) -1 \right ) }{\sin \left ( dx+c \right ) }},i \right ) -5\,i\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( dx+c \right ) -1 \right ) }{\sin \left ( dx+c \right ) }},i \right ) -3\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sin \left ( dx+c \right ) -5\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) \right ) \left ({\frac{e}{\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{11}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(11/2),x)

[Out]

-2/33*a^2/d*(6*I*cos(d*x+c)^6-6*cos(d*x+c)^5*sin(d*x+c)-5*I*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(c
os(d*x+c)+1))^(1/2)*EllipticF(I*(cos(d*x+c)-1)/sin(d*x+c),I)-5*I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*EllipticF(I*(cos(d*x+c)-1)/sin(d*x+c),I)-3*cos(d*x+c)^3*sin(d*x+c)-5*cos(d*x+c)*sin(d*x+c))/cos(
d*x+c)^6/(e/cos(d*x+c))^(11/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}}{\left (e \sec \left (d x + c\right )\right )^{\frac{11}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(11/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^2/(e*sec(d*x + c))^(11/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{{\left (264 \, d e^{6} e^{\left (2 i \, d x + 2 i \, c\right )}{\rm integral}\left (-\frac{5 i \, \sqrt{2} a^{2} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac{1}{2} i \, d x - \frac{1}{2} i \, c\right )}}{33 \, d e^{6}}, x\right ) + \sqrt{2}{\left (-3 i \, a^{2} e^{\left (8 i \, d x + 8 i \, c\right )} - 18 i \, a^{2} e^{\left (6 i \, d x + 6 i \, c\right )} - 56 i \, a^{2} e^{\left (4 i \, d x + 4 i \, c\right )} - 30 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 11 i \, a^{2}\right )} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac{1}{2} i \, d x + \frac{1}{2} i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{264 \, d e^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(11/2),x, algorithm="fricas")

[Out]

1/264*(264*d*e^6*e^(2*I*d*x + 2*I*c)*integral(-5/33*I*sqrt(2)*a^2*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(-1/2*I*
d*x - 1/2*I*c)/(d*e^6), x) + sqrt(2)*(-3*I*a^2*e^(8*I*d*x + 8*I*c) - 18*I*a^2*e^(6*I*d*x + 6*I*c) - 56*I*a^2*e
^(4*I*d*x + 4*I*c) - 30*I*a^2*e^(2*I*d*x + 2*I*c) + 11*I*a^2)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x +
 1/2*I*c))*e^(-2*I*d*x - 2*I*c)/(d*e^6)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**2/(e*sec(d*x+c))**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}}{\left (e \sec \left (d x + c\right )\right )^{\frac{11}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(11/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^2/(e*sec(d*x + c))^(11/2), x)